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Abstract

A set of optimised boundary closure schemes is presented for use with compact central finite difference schemes in
computational aeroacoustics (CAA) involving non-trivial boundaries. The boundary schemes are given in a form of
non-central compact finite differences. They maintain fourth-order accuracy, a pentadiagonal matrix system and
seven-point stencil which the main interior scheme employs. This paper introduces a new strategy to optimise the
boundary schemes in the spectral domain and achieve the best resolution characteristics given a strict tolerance for
the dispersion and dissipation errors. The boundary schemes are derived from sophisticated extrapolation of solutions
outside the domain. The extrapolation functions are devised by combining polynomials and trigonometric series which
contain extra control variables used to optimise the resolution characteristics. The differencing coefficients of the bound-
ary schemes are determined in association with the existing coefficients of the interior scheme which is also optimised
through an improved procedure in this paper. The accuracy of the proposed schemes is demonstrated by their applica-
tion to CAA benchmark problems.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

During the last decade compact finite difference/volume schemes have been used widely in various areas
including CAA (computational aeroacoustics), DNS (direct numerical simulation) and LES (large eddy sim-
ulation) [1–7]. The compact schemes were developed to perform more precise calculation of spatial flux deriv-
atives involved in the governing equations. They are implicit schemes associated with banded Hermitian
(normally tridiagonal or pentadiagonal) matrix systems, which are solved by so-called LU-decomposition
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procedures. Recently many efforts have been made to improve their spectral resolution characteristics through
Fourier analysis since it was shown by Kim and Lee [8] that increasing the resolution capability rather than the
truncation order could enhance the overall accuracy more effectively. As a result several types of compact
schemes were successfully optimised so as to show the best resolution characteristics for their own purposes
[9–12]. Due to their very low dissipative and dispersive performance the optimised compact schemes have been
developed for problems that demand long-time precision so that the high-wavenumber errors in particular can
be kept small.

Compact schemes normally use wide differencing stencils of up to seven points. Most of them are based on
central differences to minimise dissipation in unsteady computations. They are supposed to be used on interior
nodes only and generally they are not feasible near the boundaries unless the exterior solutions are known a
priori. Therefore, for a practical application, a set of non-central compact schemes must be designed and used
near the boundaries in order to close the Hermitian matrix. There are a few simple boundary schemes being
used for this purpose [1,7,10–12]. However, due to the over-biased asymmetric stencils without proper opti-
misation, they may not reproduce the high level of resolution characteristics that the interior schemes genu-
inely provide. Accordingly they are prone to significantly high error levels in both dissipative and dispersive
ways.

A common practice to suppress the excessive errors from the boundary schemes is to decrease the grid
spacing near the boundaries until the level of errors becomes similar to that from the interior schemes. In
that circumstance the computational cost increases considerably because the compressed grid spaces
require a reduction in the time step size. Such a loss of efficiency is quite detrimental to a CAA task that
is firmly based on unsteady calculation. In addition the matter gets worse when the problem involves a
wall boundary in viscous flow where the highest precision is required on the boundary. However little pro-
gress has been made in making a significant improvement of the boundary schemes to date since Kim and
Lee [13] showed the potential for a successful optimisation. Carpenter et al. [14] suggested a few classes of
stable boundary compact schemes with eigenvalue analyses, whose actual performances were left
unknown.

In this paper a complete set of boundary compact schemes is presented in an extended formalism from the
previous works [13,14]. The proposed boundary schemes are designed for use with a fourth-order pentadiag-
onal interior compact scheme which is based on central differences with a seven-point stencil. They maintain
the same fourth-order accuracy with a seven-point stencil, which is especially arranged to complete the pen-
tadiagonal matrix system. The boundary schemes are derived from sophisticated extrapolation of solutions
beyond the boundary. The extrapolation functions are devised by linear combinations of polynomials and
trigonometric series which contain extra control variables used to optimise the resolution characteristics of
the resulting schemes. The differencing coefficients of the boundary schemes are determined in association with
the existing coefficients of the interior scheme. The accuracy of the boundary schemes is then demonstrated by
their application to CAA benchmark problems.

The organisation of the paper is as follows. Section 2 gives a brief introduction to an optimised interior
compact scheme to be used in the present work. Section 3 describes the main idea of developing the boundary
closure strategy for compact schemes. Section 4 shows a detailed procedure to optimise the boundary schemes
in order to achieve the best resolution characteristics. Section 5 exhibits the results of computation in compar-
ison with analytic solutions and validates the numerical accuracy and performance of the new boundary
schemes. Finally concluding remarks are made in Section 6.
2. Optimised interior compact finite difference scheme

In this section the central compact finite difference scheme to be used on interior nodes is briefly intro-
duced before entering the main part. The optimisation procedure to achieve the best resolution character-
istics of the scheme is reviewed, and an enhanced optimisation technique is also proposed. The improved
resolution characteristics are compared with the previous ones reported in [1,8]. The resulting coefficients
are essentially associated with the development of boundary compact schemes to be introduced in the next
section.
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2.1. Interior compact finite difference scheme

The interior scheme considered in the present work is a pentadiagonal type of central compact finite differ-
ence scheme. It is a generalisation of the Hermitian scheme based on a seven-point stencil. It may be expressed
as
b�f 0i�2 þ a�f 0i�1 þ �f 0i þ a�f 0iþ1 þ b�f 0iþ2 ¼
1

Dx

X3

m¼1

amðfiþm � fi�mÞ; ð1Þ
where fi and f 0i represent an objective function f ðxÞ and its spatial derivative of ðxÞ=ox, respectively, at a loca-
tion of interest xi. The bar ‘‘�’’ represents the numerical approximation. The spatial interval Dx ¼ xiþ1 � xi is a
constant independent of the index i in the computational domain where all the grid points are equally spaced.
Matching the same terms from the Taylor series expansion of Eq. (1) up to fourth-order results in the follow-
ing two equations:
1þ 2ðaþ bÞ ¼ 2
X3

m¼1

mam; ð2Þ

3ðaþ 22bÞ ¼
X3

m¼1

m3am: ð3Þ
Eq. (1) can also be analysed in the spectral domain through Fourier transformation. The finite difference
equation (1) is a special case of the following equation with respect to the continuous variable x:
b�f 0ðx� 2DxÞ þ a�f 0ðx� DxÞ þ �f 0ðxÞ þ a�f 0ðxþ DxÞ þ b�f 0ðxþ 2DxÞ

¼ 1

Dx

X3

m¼1

am½f ðxþ mDxÞ � f ðx� mDxÞ� ð4Þ
which can restore Eq. (1) by setting x ¼ xi. The Fourier transform of the objective function is defined as
~f ðkÞ ¼
Z 1

�1
f ðxÞe�jkx dx; ð5Þ
where j ¼
ffiffiffiffiffiffiffi
�1
p

, k is the wavenumber and the tilde represents the transformed function. The use of Fourier
transform to analyse difference approximations has been discussed and established through a series of litera-
tures as listed in [1]. Taking the Fourier transform of Eq. (4) and through the use of Euler’s formula the fol-
lowing equation can be derived:
j�j~f ðkÞ½1þ 2a cosðjÞ þ 2b cosð2jÞ� ¼ 2j~f ðkÞ
X3

m¼1

am sinðmjÞ; ð6Þ
where j � kDx is a scaled wavenumber and �j � �kDx is a scaled pseudo-wavenumber which implies a certain

deviation from the true wavenumber due to the numerical approximation, i.e. ~f 0 ¼ jk~f and ~�f 0 ¼ j�k~f from Eq.
(5). Practically �j should coincide with j up to as high a value as possible in order to achieve high resolution
characteristics. This aim can be pursued by the following procedure.
2.2. Optimisation of interior scheme

It is ideally desirable to make �j equal to j in Eq. (6). However it is impossible to build up a perfect match
between �j and j over the entire range due to the limitations of numerical approximation. Replacing �j by j
inevitably leads to a certain discrepancy between the left- and the right-hand side of Eq. (6). The discrepancy
increases drastically as j approaches p. This discrepancy actually shows up as a dispersion error of the scheme.
Minimising the error over a certain wavenumber range (0 6 j < p) can lead to maximising the resolution
characteristics of the scheme. It turns out that replacing �j by ð1þ dÞj where d is a constant rather than by
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j in Eq. (6) can be very effective if d is adjusted properly. Then a total sum of the integrated error based on the
l2-norm over 0 6 j 6 r can be defined as
Table
Coeffic

a

0.5862
E ¼
Z r

0

ð1þ dÞj½1þ 2a cosðjÞ þ 2b cosð2jÞ� � 2
X3

m¼1

am sinðmjÞ
( )2

j
r

� �n
dj; ð7Þ
where rð< pÞ is a factor to determine the integration range and ðj=rÞn is a weighting function concentrating on
the high wavenumbers.

The conditions for the integrated error to be a local minimum are given by oE=of ¼ 0 where f represents the
differencing coefficients a, b or am ðm ¼ 1; . . . ; 3Þ. The five differencing coefficients remain unknown until five
equations are organised and solved for them. Two equations are already available in Eqs. (2) and (3), from the
requirement on the order of truncation. The other three come from the minimisation of the integrated error,
which are selected as
oE
oa
¼ 0;

oE
ob
¼ 0;

oE
oa3

¼ 0: ð8Þ
The coefficients a, b and a3 are chosen for the minimisation of the integrated error. Although a variety of dif-
ferent combinations of the coefficients can be considered in Eq. (8) – to be discussed in Section 2.3, the
author’s original choice ða; b; a3Þ is based on the fact that they are the extra coefficients disappearing in the
standard fourth-order central difference scheme. In summary, by solving the system of linear algebraic Eqs.
(2), (3) and (8), all the five coefficients are determined so that the maximum resolution characteristics can
be achieved amongst the fourth-order schemes. Practically this demands some trial and error in order to find
the best combination of the adjustable constants r, d and n.

2.3. Resolution characteristics of interior scheme

Once the differencing coefficients are determined then the resolution characteristics must be assessed. The
resolution characteristics can be investigated by plotting a profile of the pseudo-wavenumber which is given as
a non-linear function of j from Eq. (6):
�jðjÞ ¼ 2
P3

m¼1am sinðmjÞ
1þ 2a cosðjÞ þ 2b cosð2jÞ : ð9Þ
This equation dictates that �j falls to zero when j ¼ p regardless of the coefficients, which implies an ultimate
limitation on the finite difference based approaches. In order to measure the deviation of �j from j in a stan-
dardised fashion the relative resolution error is defined as
eðjÞ ¼ �jðjÞ � j
j

���� ���� ð10Þ
which was introduced in [1], where eðpÞ ¼ 1. Then the resolution performance of the scheme can be investi-
gated by the following quantity:
jr
c ¼ minðjjeðjÞ ¼ r; 0 < j < pÞ ð11Þ
which gives a critical wavenumber up to which the resolution error is within a tolerance limit specified by r
(eðjÞ 6 r for 0 6 j 6 jr

c ). The typical error tolerance is r ¼ 0:001 (0.1%) for a sufficient precision level
required in CAA (computational aeroacoustics).
1
ients of optimised central compact finite difference schemes

b a1 a2 a3

704032801503 0.09549533555017055 0.6431406736919156 0.2586011023495066 0.007140953479797375
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Fig. 1. Pseudo-wavenumber diagrams of fourth-order pentadiagonal central compact schemes on seven-point stencil: (a) entire and
(b) enlarged view (0:8p 6 j 6 0:9p). (—) exact, ( ) Lele’s [1], ( ) Kim and Lee’s [8], and ( ) the present scheme.
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Fig. 2. Resolution error diagrams of fourth-order pentadiagonal central compact schemes on seven-point stencil. (—) exact, ( ) Lele’s
[1], ( ) Kim and Lee’s [8], and ( ) the present scheme.
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In this paper the differencing coefficients of the interior scheme are newly optimised to achieve better res-
olution characteristics than the previous schemes. In the present work the two adjustable constants r and d in
Eq. (7) are determined to be r ¼ 2:672 and d ¼ �0:000233 through iterative calculations carried out using
Mathematica. The optimised coefficients are presented in Table 1. Profiles of the resulting pseudo-wavenum-
ber �jðjÞ and the relative resolution error eðjÞ are plotted in Figs. 1 and 2, respectively, compared with those of
the previous schemes.



Table 2
Case study on different choices of coefficients in Eq. (8)

Case 1: (a; b; a1) Case 2: (a; b; a2) Case 3: (b; a2; a3) Original: (a; b; a3)

j0:1%
c 0.836p 0.838p 0.838p 0.839 p

r 2.661 2.671 2.669 2.672
d �0.000210 �0.000246 �0.000260 �0.000233
n 15 11 10 10
a 0.5856396845642288 0.5859572811123209 0.5864696980962217 0.5862704032801503
b 0.09505833117193530 0.09527180900906593 0.09564623994911990 0.09549533555017055
a1 0.6437151795729501 0.6434288190645918 0.6429512471438849 0.6431406736919156
a2 0.2578941677285964 0.2582497707129994 0.2588269491578893 0.2586011023495066
a3 0.007064833568673624 0.007100243210265430 0.007170264195226098 0.007140953479797375
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The present scheme has a resolution limit of j0:1%
c ¼ 0:839p which is higher than j0:1%

c ¼ 0:791p from Lele’s
scheme [1]. Kim and Lee’s scheme [8] was obtained using a five times more generous tolerance r ¼ 0:5%
ðj0:5%

c ¼ 0:876pÞ, which may not be sufficient for the current level of sophistication of CAA calculations. It
can be seen in Fig. 2 that Lele’s scheme is under-relaxed with vanishing lobes on 0:63p 6 j 6 0:77p and sud-
den burst afterwards. On the other hand Kim and Lee’s scheme is over-relaxed with erupting lobes on
0:6p 6 j 6 0:87p due to the generous error tolerance (0.5%). It is shown that the present scheme is best opti-
mised to keep a constant amplitude of lobes and reach the maximum resolution range within the strict error
tolerance (0.1%).

As briefly mentioned in Section 2.2, different combinations of the coefficients other than the original choice:
ða; b; a3Þ in Eq. (8) may be selected for the error minimisation. The author has examined the following three
different cases: ða; b; a1Þ; ða; b; a2Þ and ðb; a2; a3Þ. The results are listed in Table 2 in comparison with the ori-
ginal case. Table 2 shows that all of the three extra combinations achieve as high resolutions as the original
one by readjusting the constants r, d and n as appropriate. One can check that the pseudo-wavenumber pro-
files collapse nearly on the same curve as well. This investigation evidences that Eq. (7) gives consistent results
insensitive to different choices of coefficients in Eq. (8).
3. Boundary closure strategy for compact scheme

This section presents a boundary closure strategy for the optimised interior compact scheme introduced in
the previous section. A particular spline function is devised to extrapolate the profiles of the objective function
and its first derivative beyond the boundaries virtually. It is shown that the extrapolation functions eventually
lead to a set of non-central compact schemes near and at the boundaries. The boundary schemes can be opti-
mised in the spectral domain by virtue of control variables fitted in the extrapolation functions. The detailed
procedure follows.

3.1. Extrapolation beyond boundaries

It is obvious that Eq. (1) applies directly on the interior nodes in a range of 3 6 i 6 N � 3 where i ¼ 0 and
N represents boundaries. To be able to keep applying it at the nodes i ¼ 0; 1 and 2 (at i ¼ N � 2;N � 1 and N

as well) an extrapolation may be used to approximate the objective function profile and its first derivative
beyond the boundaries. The following is a spline function from a point of interest ðxi; fiÞ near a boundary
and its first derivative that may be used for the extrapolation:
giðx�Þ ¼ fi þ
XNA

m¼1

pmðx�Þ
m þ

XNB

m¼1

qm cosð/mx�Þ þ rm sinð/mx�Þ½ �; ð12Þ

g0iðx�Þ ¼
dgiðx�Þ

dx
¼ 1

Dx

XNA

m¼1

mpmðx�Þ
m�1 �

XNB

m¼1

/m qm sinð/mx�Þ � rm cosð/mx�Þ½ �
( )

; ð13Þ
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where x� ¼ ðx� xiÞ=Dx is the non-dimensional coordinate from the point of interest. The extrapolation func-
tion is a linear combination of polynomials and trigonometric series. The constants NA and NB represent the
orders of each series. The coefficients pm ðm ¼ 1; . . . ;NAÞ, qm and rm ðm ¼ 1; . . . ;N BÞ should be determined to
describe the interior profile of the original function correctly, which allows proper extrapolation to the un-
known exterior profile. The control variables /m ðm ¼ 1; . . . ;NBÞ are used to optimise the resulting schemes
for the best resolution characteristics in Section 4.

A set of extended boundary closure schemes can be derived from combining the extrapolation function with
Eq. (1). Imposing i ¼ 0; 1 and 2 in Eq. (1) and replacing the exterior terms with the extrapolation functions
yields the following equations:
i ¼ 0 : bg00ð�2Þ þ ag00ð�1Þ þ �f 00 þ a�f 01 þ b�f 02 ¼
1

Dx

X3

m¼1

am½fm � g0ð�mÞ�; ð14Þ

i ¼ 1 : bg01ð�2Þ þ a�f 00 þ �f 01 þ a�f 02 þ b�f 03 ¼
1

Dx
a1ðf2 � f0Þ þ

X3

m¼2

am½f1þm � g1ð�mÞ�
( )

; ð15Þ

i ¼ 2 : b�f 00 þ a�f 01 þ �f 02 þ a�f 03 þ b�f 04 ¼
1

Dx

X2

m¼1

amðf2þm � f2�mÞ þ a3½f5 � g2ð�3Þ�
( )

: ð16Þ
It can be seen that three different extrapolation functions g0ðx�Þ; g1ðx�Þ and g2ðx�Þ should be determined to
make the most of Eqs. (14)–(16). In practice they are determined by matching with some of the existing terms
at the interior nodes within a certain range from the boundary. Then they are all expressed by the interior
terms. Accordingly Eqs. (14)–(16) change their form and eventually appear as non-central compact schemes.
Details on determining the complete set of extrapolation functions follow.

3.2. Determination of extrapolation functions

The present approach seeks to keep the seven-point stencil for the boundary schemes as well as the interior
scheme. Therefore the fundamental matching conditions should be
g0ðmÞ
g1ðm� 1Þ
g2ðm� 2Þ

9>=>; ¼ fm for m ¼ 0; . . . ; 6 ð17Þ
which delivers seven constraints commonly for the three different extrapolation functions. In addition the first
derivatives should also be matched. Taking the interior derivatives left available on the left-hand sides in Eqs.
(14)–(16) into account, the additional matching conditions can be arranged as
g00ðmÞ
g01ðm� 1Þ
g02ðm� 2Þ

9>=>; ¼ �f 0m for

m ¼ 0; 1; 2;

m ¼ 0; 1; 2; 3;

m ¼ 0; 1; 2; 3; 4;

8><>: ð18Þ
which gives three, four and five more constraints according to the model equations. Eqs. (17) and (18) in all
provide 10, 11 and 12 constraints for Eqs. (14)–(16), respectively.

The present approach also allows keeping fourth-order truncation accuracy for the boundary schemes as
well as the interior scheme, which means NA ¼ 4. The total number of coefficients to be found in Eqs. (12)
and (13) is NA þ 2NB, which must be an even number. However the second case in Eq. (18) provides an
odd number of constraints. Therefore an extra constraint is required in the case of i ¼ 1 to equalise the
unknowns and the constraints. Accordingly the following should be satisfied:
NA þ 2N B ¼
10 ði ¼ 0Þ;
11þ 1 ðextraÞ ði ¼ 1Þ;
12 ði ¼ 2Þ;

8><>: ð19Þ
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where the extra constraint for i ¼ 1 is given as
qNB
¼ rNB ð20Þ
which indicates that the last two coefficients of the trigonometric series are set to be identical. This may be
the simplest way to create an extra constraint without risk considering that the last term affects the least to
the series. Taking these conditions into account the combinations of the constants can be arranged as
follows:
ðN A;NBÞ ¼
ð4; 3Þ ði ¼ 0Þ;
ð4; 4Þ ði ¼ 1Þ;
ð4; 4Þ ði ¼ 2Þ:

8><>: ð21Þ
Eqs. (17) and (18) can be solved for the coefficients p1; . . . ; pNA
; q1; . . . ; qNB

; r1; . . . ; rNB , then they are expressed
by the interior terms f0; . . . ; f6; �f 00; . . . ; �f 0n (where n ¼ 2; 3 and 4 for the cases of i ¼ 0; 1 and 2, respectively)
depending on the point of interest. However they still involve the unknown variables /1; . . . ;/NB

which are
used to optimise the resolution characteristics afterwards.
3.3. Derivation of boundary compact schemes

Once all the coefficients of the extrapolation functions are determined the exterior terms are properly
extrapolated. The exterior terms can be replaced by some linear combinations of the interior terms, which
may turn Eqs. (14)–(16) into the following form:
XM

m¼0

cm
�f 0m ¼

1

Dx

X6

m¼0

dmfm ð22Þ
where M ¼ 2; 3 and 4 for the cases of i ¼ 0; 1 and 2, respectively, due to the constraints from Eq. (18). The
intermediary coefficients cm (m ¼ 0; . . . ;M) and dm (m ¼ 0; . . . ; 6) are in practice non-linear functions of /m

ðm ¼ 1; . . . ;N BÞ. Dividing Eq. (22) with cn (n ¼ 0; 1 and 2 for the cases of i ¼ 0; 1 and 2, respectively) for nor-
malisation and rearranging the right-hand-side terms ultimately results in the following equations:
i ¼ 0 : �f 00 þ c01
�f 01 þ c02

�f 02 ¼
1

Dx

X6

m¼0; 6¼0

b0mðfm � f0Þ; ð23Þ

i ¼ 1 : c10
�f 00 þ �f 01 þ c12

�f 02 þ c13
�f 03 ¼

1

Dx

X6

m¼0; 6¼1

b1mðfm � f1Þ; ð24Þ

i ¼ 2 : c20
�f 00 þ c21

�f 01 þ �f 02 þ c23
�f 03 þ c24

�f 04 ¼
1

Dx

X6

m¼0; 6¼2

b2mðfm � f2Þ; ð25Þ
which provides the set of non-central boundary compact schemes being sought. These formulations can close
the pentadiagonal matrix system at the boundaries and maintain fourth-order of formal accuracy as well as
the seven-point stencils throughout. All the coefficients remaining as non-linear functions of /m

(m ¼ 1; . . . ;NB) are finally determined when the optimal control variables are found in Section 4.
4. Optimisation of boundary compact finite difference schemes

This section presents an optimisation procedure for the boundary compact finite difference schemes formu-
lated in the previous section. The pseudo-wavenumbers of the boundary schemes are derived and the unknown
control variables are determined to maximise the range of coincidence between the pseudo-wavenumbers and
the true wavenumbers. It is shown that the optimised boundary schemes offer significantly improved resolu-
tion characteristics compared with the previous ones.
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4.1. Fourier analysis of boundary schemes

The Fourier transform of Eqs. (23)–(25) through the same procedure as used in Section 2.1 may be
expressed in a simple form as
j�j~f ðkÞ½AðjÞ þ jBðjÞ� ¼ ~f ðkÞ½CðjÞ þ jDðjÞ�; ð26Þ

where the intermediary functions AðjÞ;BðjÞ;CðjÞ and DðjÞ are given for each scheme as follows:
i ¼ 0 :

AðjÞ ¼ 1þ c01 cosðjÞ þ c02 cosð2jÞ;
BðjÞ ¼ c01 sinðjÞ þ c02 sinð2jÞ;

CðjÞ ¼
P6

m¼0; 6¼0

b0m½cosðmjÞ � 1�;

DðjÞ ¼
P6

m¼0; 6¼0

b0m sinðmjÞ;

8>>>>>>>><>>>>>>>>:
ð27Þ

i ¼ 1 :

AðjÞ ¼ 1þ ðc10 þ c12Þ cosðjÞ þ c13 cosð2jÞ;
BðjÞ ¼ ðc12 � c10Þ sinðjÞ þ c13 sinð2jÞ;

CðjÞ ¼
P6

m¼0; 6¼1

b1mfcos½ðm� 1Þj� � 1g;

DðjÞ ¼
P6

m¼0; 6¼1

b1m sin½ðm� 1Þj�;

8>>>>>>>><>>>>>>>>:
ð28Þ

i ¼ 2 :

AðjÞ ¼ 1þ ðc21 þ c23Þ cosðjÞ þ ðc20 þ c24Þ cosð2jÞ;
BðjÞ ¼ ðc23 � c21Þ sinðjÞ þ ðc24 � c20Þ sinð2jÞ;

CðjÞ ¼
P6

m¼0; 6¼2

b2mfcos½ðm� 2Þj� � 1g;

DðjÞ ¼
P6

m¼0; 6¼2

b2m sin½ðm� 2Þj�:

8>>>>>>>><>>>>>>>>:
ð29Þ
Accordingly the pseudo-wavenumbers of the boundary schemes are derived from Eq. (26) and they can be
represented as
�jðjÞ ¼ AðjÞDðjÞ � BðjÞCðjÞ
A2ðjÞ þ B2ðjÞ

� j
AðjÞCðjÞ þ BðjÞDðjÞ

A2ðjÞ þ B2ðjÞ
; ð30Þ
which is a complex function.
The pseudo-wavenumbers can be divided into real ðRe½�jðjÞ�Þ and imaginary ðIm½�jðjÞ�Þ parts while those of

the interior central schemes consist of the real part only. (Note that ReðzÞ ¼ a and ImðzÞ ¼ b are always real
numbers where z ¼ aþ jb.) Hence the optimisation of the boundary schemes involves an additional task for
the imaginary part. The optimisation should be done such that: the real and imaginary part of �jðjÞ follow the
true wavenumber ðRe½�jðjÞ� ! jÞ and zero ðIm½�jðjÞ� ! 0Þ, respectively, in as wide range of wavenumbers
ð0 6 j < pÞ as possible. Deviations will result in numerical errors where the real part represents dispersive
error and the imaginary part represents dissipative error. Those errors should be minimised in order to make
the finite difference schemes a good approximation of partial differentiation.
4.2. Optimisation of boundary schemes

As indicated in Section 3.3 the coefficients in Eqs. (22)–(24) still remain as non-linear functions of /m

(m ¼ 1; . . . ;N B), the set of control variables consisting in the trigonometric series of Eqs. (12) and (13). The
control variables need to be determined so that both dispersive and dissipative numerical errors are minimised.
The following quantities are used to measure the errors of the boundary schemes:
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eRðjÞ ¼
Re½�jðjÞ� � j

j

���� ����; ð31Þ

eIðjÞ ¼
Im½�jðjÞ�

j

���� ����; ð32Þ
which describe the real and the imaginary part of relative deviation of the pseudo-wavenumber from the true
wavenumber. Then the resolution performance of the boundary schemes can be investigated by the following
quantities:
jr
c ¼

1

2
ðjr

Rc þ jr
IcÞ; ð33Þ
where
jr
Rc ¼ minðjjeRðjÞ ¼ r; 0 < j < pÞ; ð34Þ

jr
Ic ¼ minðjjeIðjÞ ¼ r; 0 < j < pÞ; ð35Þ
which gives a critical wavenumber up to which the resolution error is within a tolerance limit specified
by r (eRðjÞ 6 r for 0 6 j 6 jr

Rc and eIðjÞ 6 r for 0 6 j 6 jr
Ic). It can be noted that the same factor is

given to jr
Rc and jr

Ic in Eq. (33). The factors may be changed in the form of jr
c ¼ sjr

Rc þ ð1� sÞjr
Ic in

order to put more weight on one of them. However the present work keeps s ¼ 1=2 without biased
weight.

The error tolerance r ¼ 0:001 (0.1%) is applied to the boundary scheme for i ¼ 2 given by Eq. (25). In the
meantime, the error tolerances are relaxed to r ¼ 0:002 (0.2%) for i ¼ 1 and r ¼ 0:003 (0.3%) for i ¼ 0, in
order to achieve as wide a resolution range of the interior scheme as possible. However the present error tol-
erances are still smaller than those of the previous schemes [1,11–13]. For instance Kim and Lee’s work [13]
was done with r ¼ 0:005 (0.5%) throughout.

The control variables /m (m ¼ 1; . . . ;NB) are adjusted to maximise the value of jr
c for each boundary

scheme. A set of roots can be found by the Newton–Raphson type of iterative method using the Mathematica.
The iteration starts from an initial guess of /m ¼ mp=NB ðm ¼ 1; . . . ;N BÞ and continues until the optimal com-
bination is reached. The final values of /m and the resolution limits jr

Rc; j
r
Ic and jr

c are listed in Tables 3 and 4
for each boundary scheme. As a result all the coefficients for the optimised boundary schemes are finally deter-
mined as presented in Table 5. Profiles of the resulting pseudo-wavenumbers Re½�jðjÞ� and Im½�jðjÞ� as well as
the relative resolution errors eRðjÞ and eIðjÞ are plotted in Figs. 3–5 in comparison with those of the previous
schemes [1,11,13].
3
al values of control variables for boundary compact schemes

e /1 /2 /3 /4

0.147p 0.498p 1.234p –
0.190p 0.645p 0.765p 1.260p
0.140p 0.352p 0.713p 0.788p

4
tion limits of optimised boundary compact schemes

e r (%) jr
Rc jr

Ic jr
c

0.3 0.827p 0.505p 0.666p
0.2 0.779p 0.780p 0.780p
0.1 0.911p 0.796p 0.854p
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Fig. 3. Pseudo-wavenumber and resolution error diagrams of boundary compact schemes for i ¼ 0. (—) exact, ( ) Lele’s [1], (–––) Lee
and Seo’s [11], ( ) Kim and Lee’s [13], and ( ) the present scheme.

Table 5
Coefficients of optimised boundary compact schemes

Coefficients i ¼ 0 i ¼ 1 i ¼ 2

ci0 – 0.08360703307833438 0.03250008295108466
ci1 5.912678614078549 – 0.3998040493524358
ci2 3.775623951744012 2.058102869495757 –
ci3 – 0.9704052014790193 0.7719261277615860
ci4 – – 0.1626635931256900
bi0 – �0.3177447290722621 �0.1219006056449124
bi1 �3.456878182643609 – �0.6301651351188667
bi2 5.839043358834730 �0.02807631929593225 –
bi3 1.015886726041007 1.593461635747659 0.6521195063966084
bi4 �0.2246526470654333 0.2533027046976367 0.3938843551210350
bi5 0.08564940889936562 �0.03619652460174756 0.01904944407973912
bi6 �0.01836710059356763 0.004080281419108407 �0.001027260523947668
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Overall it may be concluded from Figs. 3–5 that the present boundary schemes provide significantly
improved resolution characteristics over the previous ones, especially compared with Lele’s [1] and Lee
and Seo’s [11], which are based on second-order accuracy and small grid stencils. Providing the resolution
limits that are listed in Table 4, the present boundary schemes show much lower levels of both dispersive
and dissipative errors. It should be particularly noted that the present boundary schemes reach even
higher resolution limits and stricter error tolerances. In terms of resolution limits and profiles it is proved
that the present optimisation procedure works effectively for the boundary compact schemes. Prior to their
application in an actual computation the numerical stability should be also validated, and this is done
next.

4.3. Eigenvalue analysis

In order to confirm the numerical stability of the present boundary schemes in association with the interior
scheme an eigenvalue analysis is performed. The analysis begins by considering a one-dimensional linear scalar
wave equation:
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of
ot
þ c1

of
ox
¼ 0 ð36Þ
over a domain x 2 ½0; L� with a prescribed boundary condition f ðx ¼ 0; tÞ ¼ fbðtÞ, where c1 is the wave con-
vection speed. For the purpose of a stability analysis fbðtÞ can be set to zero without loss of generality [14]. The
domain is discretised into N equal intervals (N þ 1 nodes) with Dx ¼ L=N . Imposing the boundary condition at
the node i ¼ 0 then leads to N unknowns to be found ði ¼ 1; . . . ;NÞ. The derivative of =ox in Eq. (36) is numer-
ically evaluated by the finite difference schemes, which yields a linear system of equations expressed in a ma-
trix–vector form as
P�f 0 ¼ 1

Dx
Qf; ð37Þ
where f is an N-dimensional vector representing the values of the objective function at the nodes and �f 0 is a
vector of the numerical derivatives:
f ¼ ðf1; f2; . . . ; fN�1; fN ÞT; �f 0 ¼ �f 01; �f
0
2; . . . ; �f 0N�1;

�f 0N
� �T

: ð38Þ



1008 J.W. Kim / Journal of Computational Physics 225 (2007) 995–1019
In Eq. (37) P and Q represent N � N matrices in which the top two rows have been rearranged to eliminate �f 00,
which is redundant due to the fixed boundary condition on f0:
P ¼

1 c�12 c�13 0 � � � 0 0 0 0

c�21 1 c�23 c�24 0 � � � 0 0 0

b a 1 a b 0 � � � 0 0

0 b a 1 a b 0 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. ..

.

0 � � � 0 b a 1 a b 0

0 0 � � � 0 c24 c23 1 c21 c20

0 0 0 � � � 0 c13 c12 1 c10

0 0 0 0 � � � 0 c02 c01 1

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

; ð39Þ

Q ¼

b�11 b�12 b�13 b�14 b�15 b�16 0 0 0 � � � 0

b�21 b�22 b�23 b�24 b�25 b�26 0 0 0 � � � 0

�a2 �a1 0 a1 a2 a3 0 0 0 � � � 0

�a3 �a2 �a1 0 a1 a2 a3 0 0 � � � 0

0 �a3 �a2 �a1 0 a1 a2 a3 0 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. ..

.

0 � � � 0 �a3 �a2 �a1 0 a1 a2 a3 0

0 � � � 0 0 �a3 �a2 �a1 0 a1 a2 a3

0 � � � 0 0 �b26 �b25 �b24 �b23 �b22 �b21 �b20

0 � � � 0 0 �b16 �b15 �b14 �b13 �b12 �b11 �b10

0 � � � 0 0 �b06 �b05 �b04 �b03 �b02 �b01 �b00

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

; ð40Þ
where the coefficients rearranged for the boundary condition are given by
ðc�12; c
�
13Þ ¼ ðc12 � c10c02; c13Þ=ð1� c10c01Þ; ð41Þ

ðc�21; c
�
23; c

�
24Þ ¼ ðc10c21 � c20; c10c23 � c20c13; c10c24Þ=ðc10 � c20c12Þ; ð42Þ

b�1m ¼ ðb1m � c10b0mÞ=ð1� c10c01Þ for m ¼ 1; . . . ; 6; ð43Þ
b�2m ¼ ðc10b2m � c20b1mÞ=ðc10 � c20c12Þ for m ¼ 1; . . . ; 6; ð44Þ

bnn ¼ �
X6

m¼0; 6¼n

bnm for n ¼ 0; 1; 2: ð45Þ
The Eqs. (41) and (43) are retrieved by cancelling �f 00 out from Eqs. (23) and (24). Likewise Eqs. (42) and (44)
follow from Eqs. (24) and (25).

Applying the numerical differentiation described as above to Eq. (36) then leads to a matrix–vector form:
P
df

dt
¼ � c1

Dx
Qf: ð46Þ
Since Eq. (46) is a system of ordinary differential equations in time with constant coefficients the solution con-
sists of normal modes f ¼ f̂ewt with a constant w representing the rates of decay or amplification of the modes.
Imposing the normal modes into Eq. (46) leads to an eigenvalue problem:
Qf̂ ¼ �xPf̂; ð47Þ

where x ¼ wDx=c1 is the dimensionless eigenvalue and f̂ becomes the corresponding eigenvector. The real
parts of the eigenvalues are required to be equal to or less than zero to guarantee the numerical stability of
the present boundary schemes, i.e. jewtj 6 1. The eigenvalues are obtained numerically by the Mathematica.
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Fig. 6 illustrates distributions of the eigenvalues in a complex plane for different sizes of the matrices, i.e. the
numbers of nodes given. It is shown that most of the eigenvalues are located in the left half of the complex
plane. However some of them marginally cross the y-axis on the positive side. Fig. 7 plots the maximum real
parts of the eigenvalues where it is shown that the orders of magnitudes are relatively small and converging to
zero as the number of nodes increases. It turns out that those components are neutrally stable in practice and
do not cause any instability in the actual computations that follow.

4.4. Stability and convergence test

The numerical stability of the present boundary schemes is further assessed by putting Eq. (36) into actual
calculations through the discretisation by Eq. (46). The initial and boundary conditions for the calculations
are
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f ðx; t ¼ 0Þ ¼ f1 sinð4px=LÞ; 0 6 x 6 L; ð48Þ
f ðx ¼ 0; tÞ ¼ �f1 sinð4pc1t=LÞ; t P 0: ð49Þ
Then the exact solution to this initial boundary value problem is given by
fexactðx; tÞ ¼ f1 sin½4pðx� c1tÞ=L�: ð50Þ

Calculations are carried out on a range of uniform meshes with different grid spaces, i.e. number of nodes. The
classical fourth-order Runge–Kutta scheme is used for integration of solutions in time. The time step sizes are
determined by the CFL numbers specified. Three different CFL numbers are tested to investigate the influence
of the time integration scheme. The calculations are carried out up to t ¼ 100L=c1. The errors of numerical

solutions are measured at the final moment by the l2-norm defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðfi � fexactÞ2=ðNf 2
1Þ

q
. The resulting

error diagrams are plotted in Fig. 8 for various grid densities and CFL numbers. It is shown that the present
boundary schemes consistently yield stable solutions and the solutions converge to the exact one as the num-
ber of nodes increases. It is also confirmed that the neutrally stable eigenvalue components do not harm the
overall stability, independent of the time step.

5. Application to benchmark problems

In this section the performance of the present boundary schemes is demonstrated through their application
to three different benchmark problems. These problems include one-dimensional scalar wave convection, two-
dimensional vorticity wave convection and sound wave scattering in complex geometry. The accuracy of the
numerical solutions is quantified by comparing with analytic solutions. The accuracy of the present boundary
schemes is then compared with that of the previous ones in order to confirm the performance enhancement.

5.1. One-dimensional scalar wave convection

The one-dimensional scalar wave convection is chosen as the first benchmark problem. This problem sim-
ulates the convection of an initial wave pulse and its transmission through a computational boundary. Eq. (36)
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is also used in this section. The calculations are done over a domain x 2 ½�0:5L; L� in which the initial wave
pulse is given as
F

f ðx; t ¼ 0Þ ¼ f1½2þ cosðc1x=LÞ� exp½�c2ðln 2Þx2=L2�; �0:5L 6 x 6 L; ð51Þ

where the constants are prescribed as c1 ¼ 17c2 and c2 ¼ 100. This problem was originally provided in the
Fourth Computational Aeroacoustics Workshop on Benchmark Problems [15]. The exact solution to this ini-
tial value problem is given by
fexactðx; tÞ ¼ f1f2þ cosðc1x̂=LÞg exp½�c2ðln 2Þx̂2=L2� with x̂ ¼ x� c1t: ð52Þ

Due to the fact that the there is no actual wave incoming through the inlet boundary it is possible to pose a

supplementary boundary condition:
f ðx < �0:5L; tÞ ¼ f 0ðx < �0:5L; tÞ ¼ 0; t P 0; ð53Þ

which allows use of the interior scheme directly at the inlet boundary nodes (i ¼ 0; 1 and 2). On the other hand
the boundary schemes are implemented at the exit boundary nodes (i ¼ N � 2;N � 1 and N) where the pre-
scribed wave pulse eventually arrives. The performance of the boundary schemes is examined as the pulse
passes through the boundary.

The solutions are integrated by the classical fourth-order Runge–Kutta scheme with the time step size
determined by CFL number equal to 0.5. Fig. 9 shows the convection of the wave pulse calculated by the pres-
ent schemes in comparison with the exact solution. The solution seems quite accurate even when the wave

pulse is passing through the exit boundary. The l2-norm error is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼0ðfi � fexactÞ2=½ðN þ 1Þf 2
1�

q
to measure variation of the numerical error with time. The error grows slowly initially and then jumps sud-
denly as the wave pulse crosses the boundary. Fig. 10 shows the changes of numerical errors with time. It
shows that the present boundary schemes yield much lower errors than the previous schemes. The peak error
levels that occur in the vicinity of t ¼ L=c1 are plotted in Fig. 11 varying with different numbers of nodes used.
This demonstrates the superior performance of the present boundary schemes for a variety of grid densities.

5.2. Two-dimensional vorticity wave convection

The next benchmark problem is two-dimensional vorticity wave convection in a supersonic free stream.
This problem simulates the convection of an initial isentropic vorticity wave packet and its transmission
through the computational boundary. It involves the two-dimensional compressible Euler equations in a full
conservation form as
oQ

ot
þ oE

ox
þ oF

oy
¼ 0; ð54Þ
x / L

f/
f ∞

0/ =∞ Ltc 5.0/ =∞ Ltc 1/ =∞ Ltc
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ig. 9. One-dimensional scalar wave convection calculated by the present schemes. (—) exact and (s) numerical. N ¼ 240.
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with
Q ¼

q

qu

qv

qet

0BBB@
1CCCA; E ¼

qu

qu2 þ p

qvu

qðet þ pÞu

0BBB@
1CCCA and F ¼

qv

quv

qv2 þ p

qðet þ pÞv

0BBB@
1CCCA; ð55Þ
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where the total energy per unit mass is defined as et ¼ p=½ðc� 1Þq� þ ðu2 þ v2Þ=2 and c ¼ cp=cv is the ratio of
specific heats. For air, c ¼ 1:4 in the present computation. The calculations are done over a domain
x 2 ½�0:5L; L� and y 2 ½�0:75L; 0:75L� in which the initial isentropic vortex is given by
Fig. 1
jxjL=ð
qðx; y; t ¼ 0Þ ¼ q1½1� ðc� 1Þw2ðx; yÞ=2�1=ðc�1Þ

uðx; y; t ¼ 0Þ ¼ u1 þ a1ðy=RÞwðx; yÞ
vðx; y; t ¼ 0Þ ¼ �a1ðx=RÞwðx; yÞ
pðx; y; t ¼ 0Þ ¼ p1ðq=q1Þ

c

9>>>=>>>; for � 0:5L 6 x 6 L; �0:75L 6 y 6 0:75L; ð56Þ
with
wðx; yÞ ¼ e
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp½1� ðx2 þ y2Þ=R2�

q
; ð57Þ
where R ¼ 0:08L is given to specify the size of vortex and e is a constant to determine the strength of vortex.
e ¼ 0:1 is chosen for linear cases and higher values are tested for non-linear cases as well. The free stream
velocity u1 ¼ M1a1 is given by the Mach number M1 ¼ 2:0, where a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp1=q1

p
is the ambient speed

of sound. This problem was previously used by Yee et al. [16] for their high-order shock-capturing methods
and filters. The exact solution is simply given by
qexactðx; y; tÞ ¼ q1½1� ðc� 1Þw2ðx̂; yÞ=2�1=ðc�1Þ

uexactðx; y; tÞ ¼ u1 þ a1ðy=RÞwðx̂; yÞ
vexactðx; y; tÞ ¼ �a1ðx̂=RÞwðx̂; yÞ
pexactðx; y; tÞ ¼ p1ðq=q1Þ

c

9>>>=>>>; with x̂ ¼ x� u1t: ð58Þ
x / L
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Due to the supersonic free stream velocity the flow properties beyond the inlet boundary are invariant.
Accordingly it is possible to let the x-direction flux derivatives in Eq. (54) be zero on x < �0:5L, which allows
use of the interior scheme directly at the inlet boundary nodes (i ¼ 0; 1 and 2) as in the previous case. On the
other hand the boundary schemes are used at the exit boundary nodes (i ¼ N � 2;N � 1 and N). The bound-
ary schemes are also used at the lower (j ¼ 0; 1 and 2) and upper boundary nodes (j ¼ N � 2;N � 1 and N) in
the y-direction. Numerical non-reflection boundary conditions [17] are implemented on the lower and upper
boundaries to avoid spurious errors in the calculation. No boundary conditions are imposed at the exit bound-
ary due to the supersonic outflow. The performance of the boundary schemes is examined while the wave
packet passes through the exit boundary.

The classical fourth-order Runge–Kutta time integration is employed with CFL number 0.5. Fig. 12 shows
time-traced contour plots of the two-dimensional wave convection calculated by the present schemes. Fig. 13
shows the wave profiles along the x-axis in comparison with the exact solution. A two-dimensional version of

the l2-norm error is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼0

PN
i¼0ðxi;j � xexactÞ2L2=½ðN þ 1Þeu1�2

q
to measure the numerical error var-

iation with time where x ¼ ov=ox� ou=oy is the vorticity. Fig. 14 shows the changes of numerical errors with
x / L
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Fig. 13. Centreline profiles of two-dimensional vorticity wave along x-axis calculated by the present schemes. (—) exact and (s)
numerical. e ¼ 0:1: ðN � NÞ ¼ ð60� 60Þ.
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time. The peak error levels that occur in the vicinity of t ¼ L=u1 are plotted in Fig. 15 for the different num-
bers of nodes used. It is effectively demonstrated that the present boundary schemes generate more accurate
solutions than the previous schemes do in two-dimensional applications also. In addition the same calculations
are done in non-linear regime with higher values of e as shown in Fig. 16, where e ¼ 5 is the fully non-linear
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Fig. 15. Peak error levels in calculation of two-dimensional vorticity wave convection varying with number of nodes used. ( h) Kim
and Lee’s [13] and (—s) the present boundary schemes. e ¼ 0:1.
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Fig. 16. Peak error levels in calculation of two-dimensional vorticity wave convection varying with number of nodes used. Non-linear
calculation with the present schemes. (—n) e ¼ 5, (—h) e ¼ 3, and (—s) e ¼ 1.
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case that was used in [16]. It is noticed that the proposed set of optimised compact schemes is capable of high-
order accurate non-linear solutions without any filtering technique as long as the solution remains continuous.

5.3. Sound wave scattering in complex geometry

The last benchmark problem is two-dimensional sound wave scattering in complex geometry. This problem
simulates a sound field scattered by two rigid circular cylinders of different sizes from a monopole acoustic
source located between the cylinders in a zero mean flow. It was originally provided in the Fourth Computa-
tional Aeroacoustics Workshop on Benchmark Problems [18] and allows a stringent test on the performance
of high-order CAA schemes when handling increasingly complex geometries. The calculation here involves the
generalised two-dimensional compressible Euler equations in full conservation form with a source term as
Fig. 17
o bQ
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þ obE
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þ obF

og
¼ bS ð59Þ
with
 bQ ¼ Q=J ; bE ¼ ðnxEþ nyFÞ=J ; bF ¼ ðgxEþ gyFÞ=J and bS ¼ ð0; 0; 0; _psÞT=J : ð60Þ
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Fig. 18. H-topology grid mesh system for sound wave scattering in complex geometry.
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The spatially distributed axisymmetric acoustic source is given by
Fig. 1
t ¼ 40
_ps ¼ eðq1a3
1=LÞ sinð2pc1a1t=LÞ exp½�c2ðln 2Þðx2 þ y2Þ=L2�; ð61Þ
where the constants are e ¼ 0:1; c1 ¼ 4 and c2 ¼ 25. The length scale L represents the diameter of the larger
cylinder in this problem.

The computational domain is depicted in Fig. 17 and the H-topology grid mesh system is shown in Fig. 18.
The entire domain is decomposed into 10 virtual blocks as illustrated in Fig. 17 along the singular lines where
the grid metrics are discontinuous. In order to avoid the grid singularities each block is isolated in terms of
numerical differentiation using the present boundary schemes, which do not cross the block boundaries. Inter-
face conditions [19] are then implemented to restore correct physical communication between the isolated
blocks. Non-reflecting boundary conditions [17] are used with a buffer layer [20] surrounding the physical
domain. Wall boundary conditions [21] are imposed on the cylinder surfaces. The boundary schemes can
be effectively tested in this problem due to the presence of many boundaries in a single domain.

The calculation is done over a domain x 2 ½�9L; 9L� and y 2 ½�4L; 4L� excluding the buffer layer. The bigger
cylinder is located at ð�4L; 0Þ and the smaller one at ð4L; 0Þ. The total number of nodes used is 166,400
ð650� 256Þ inside the domain. This provides 8 PPW (points per wavelength) on average, the highest 9.55
PPW is given on the cylinder surfaces and on block boundaries where some extra resolution is required.
The classical fourth-order Runge–Kutta time integration is employed with CFL number 1. The calculation
continues until t ¼ 40L=a1 and the collection of pressure data starts at t ¼ 30L=a1 when the transient waves
due to the initial disturbances have completely disappeared.

The scattered sound pressure field calculated by the present schemes is plotted in Fig. 19. Interference
between the radiating waves and the reflected waves is shown in the inner region. The scattered waves are
clearly visualised in the outer region. The entire sound field is simulated well without any spurious noise
due to the virtual boundaries and the walls. Fig. 20 presents the profiles of root-mean-squared (RMS) sound
pressure plotted along the cylinder surfaces compared with analytic solution. The RMS sound pressure from
the numerical solution is measured here by
p0RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ t2

t1

ðp � �pÞ2 dt=ðt2 � t1Þ
s

with �p ¼
Z t2

t1

p dt=ðt2 � t1Þ; ð62Þ
where t1 ¼ 30L=a1 and t1 ¼ 40L=a1. The analytic solution is derived from the linearised Euler equations and
can be found in [18]. As shown in Fig. 20 the present solution agrees well with the analytic solution whereas
the previous schemes yield noticeable errors. The superiority of the present boundary schemes is confirmed in
a complex geometry application.
9. Sound wave scattering in complex geometry calculated by the present schemes. Contours of normalised sound pressure at
L=a1 : p0=ðeq1a2

1Þ.
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6. Conclusions

A complete set of boundary compact finite difference schemes has been presented. The use of polynomial-
trigonometric blended extrapolation functions has led to a new optimisation strategy achieving improved res-
olution characteristics of the boundary schemes. The eigenvalue analysis and numerical test have confirmed
the overall stability of the new boundary schemes for the pentadiagonal matrix system. The proposed extrap-
olation functions should also be useful for optimisation of other types of compact schemes. The increased per-
formance and accuracy of the new boundary schemes have been effectively demonstrated through their
applications to single- and multi-dimensional benchmark problems. The new boundary schemes can be
employed in a variety of practical CAA applications that use compact finite difference schemes, especially
in complex geometries.
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